Qus : 2 MCA NIMCET PYQ 1
If f(x) is a polynomial of degree 4, f(n) = n + 1 & f(0) = 25, then find f(5) = ?
1 30 2 20 3 25 4 None of these Go to Discussion MCA NIMCET Previous Year PYQ MCA NIMCET NIMCET 2023 PYQ Solution
Correct Shortcut Method — Find \( f(5) \)
Step 1: Define a helper polynomial:
\[
g(x) = f(x) - (x + 1)
\]
Given: \( f(1) = 2, f(2) = 3, f(3) = 4, f(4) = 5 \Rightarrow g(1) = g(2) = g(3) = g(4) = 0 \)
So,
\[
g(x) = A(x - 1)(x - 2)(x - 3)(x - 4)
\quad \Rightarrow \quad f(x) = A(x - 1)(x - 2)(x - 3)(x - 4) + (x + 1)
\]
Step 2: Use \( f(0) = 25 \) to find A:
\[
f(0) = A(-1)(-2)(-3)(-4) + (0 + 1) = 24A + 1 = 25
\Rightarrow A = 1
\]
Step 3: Compute \( f(5) \):
\[
f(5) = (5 - 1)(5 - 2)(5 - 3)(5 - 4) + (5 + 1)
= 4 \cdot 3 \cdot 2 \cdot 1 + 6 = 24 + 6 = \boxed{30}
\]
✅ Final Answer: \( \boxed{f(5) = 30} \)
Qus : 3 MCA NIMCET PYQ 2
The maximum value of $f(x) = (x – 1)^2 (x + 1)^3$ is equal to $\frac{2^p3^q}{3125}$
then the ordered pair of (p, q) will be
1 (3,7) 2 (7,3) 3 (5,5) 4 (4,4) Go to Discussion MCA NIMCET Previous Year PYQ MCA NIMCET NIMCET 2023 PYQ Solution
Maximum Value of \( f(x) = (x - 1)^2(x + 1)^3 \)
Step 1: Let’s define the function:
\[
f(x) = (x - 1)^2 (x + 1)^3
\]
Step 2: Take derivative to find critical points
Use product rule:
Let \( u = (x - 1)^2 \), \( v = (x + 1)^3 \)
\[
f'(x) = u'v + uv' = 2(x - 1)(x + 1)^3 + (x - 1)^2 \cdot 3(x + 1)^2
\]
\[
f'(x) = (x - 1)(x + 1)^2 [2(x + 1) + 3(x - 1)]
\]
\[
f'(x) = (x - 1)(x + 1)^2 (5x - 1)
\]
Step 3: Find critical points
Set \( f'(x) = 0 \):
\[
(x - 1)(x + 1)^2 (5x - 1) = 0
\Rightarrow x = 1,\ -1,\ \frac{1}{5}
\]
Step 4: Evaluate \( f(x) \) at these points
\( f(1) = 0 \)
\( f(-1) = 0 \)
\( f\left(\frac{1}{5}\right) = \left(\frac{1}{5} - 1\right)^2 \left(\frac{1}{5} + 1\right)^3 = \left(-\frac{4}{5}\right)^2 \left(\frac{6}{5}\right)^3 \)
\[
f\left(\frac{1}{5}\right) = \frac{16}{25} \cdot \frac{216}{125} = \frac{3456}{3125}
\]
Step 5: Compare with given form:
It is given that maximum value is \( \frac{3456}{3125} = 2^p \cdot 3^q / 3125 \)
Factor 3456:
\[
3456 = 2^7 \cdot 3^3
\Rightarrow \text{So } p = 7, \quad q = 3
\]
✅ Final Answer:
\( \boxed{(p, q) = (7,\ 3)} \)
Qus : 5 MCA NIMCET PYQ 3
A real valued function f is defined as $f(x)=\begin{cases}{-1} & {-2\leq x\leq0} \\ {x-1} & {0\leq x\leq2}\end{cases}$.
Which of the following statement is FALSE?
1
$$f(|x|)=|x|-1,\, if\, 0\leq x\leq$$ 2 $$f(|x|)=x-1,\, if\, 1\leq x\leq2$$ 3 $$f(|x|)+|f(x)|=1,\, if\, 0\leq x\leq1$$ 4
$$f(|x|)-|f(x)|=1,\, if\, 1\leq x\leq2$$ Go to Discussion MCA NIMCET Previous Year PYQ MCA NIMCET NIMCET 2023 PYQ
Solution Qus : 7 MCA NIMCET PYQ 1 Let $X_i, i = 1,2,.. , n$ be n observations and $w_i = px_i +k, i = 1,2,
,n$ where p and k are constants. If the mean of $x_i 's$ is 48 and the standard deviation is 12, whereas the mean of $w_i 's$ is 55 and the standard deviation is 15, then the value of p and k should be
1 p = 1.25, k = -5 2 p=-1.25, k = 5 3 p = 2.5, k = -5 4 p = 25, k = 5 Go to Discussion MCA NIMCET Previous Year PYQ MCA NIMCET NIMCET 2019 PYQ Qus : 9 MCA NIMCET PYQ 2 The number of one - one functions
f: {1,2,3} → {a,b,c,d,e} is
1 125 2 60 3 243 4 None of these Go to Discussion MCA NIMCET Previous Year PYQ MCA NIMCET NIMCET 2024 PYQ Solution
Given: A one-one function from set $\{1,2,3\}$ to set $\{a,b,c,d,e\}$
Step 1: One-one (injective) function means no two elements map to the same output.
We choose 3 different elements from 5 and assign them to 3 inputs in order.
So, total one-one functions = $P(5,3) = 5 \times 4 \times 3 = 60$
✅ Final Answer: $\boxed{60}$
Qus : 13 MCA NIMCET PYQ 1 If f(x)=cos[$\pi$^2]x+cos[-$\pi$^2]x, where [.] stands for greatest integer function, then $f(\pi/2)$=
1 -1 2 0 3 1 4 2 Go to Discussion MCA NIMCET Previous Year PYQ MCA NIMCET NIMCET 2024 PYQ Solution
? Function with Greatest Integer and Cosine
Given:
\[
f(x) = \cos\left([\pi^2]x\right) + \cos\left([-\pi^2]x\right)
\]
Find: \[
f\left(\frac{\pi}{2}\right)
\]
Step 1: Estimate Floor Values
\[
\pi^2 \approx 9.8696 \Rightarrow [\pi^2] = 9,\quad [-\pi^2] = -10
\]
Step 2: Plug into the Function
\[
f\left(\frac{\pi}{2}\right) = \cos\left(9 \cdot \frac{\pi}{2}\right) + \cos\left(-10 \cdot \frac{\pi}{2}\right)
= \cos\left(\frac{9\pi}{2}\right) + \cos(-5\pi)
\]
Step 3: Simplify
\[
\cos\left(\frac{9\pi}{2}\right) = 0,\quad \cos(-5\pi) = -1
\]
✅ Final Answer:
\[
\boxed{-1}
\]
Qus : 16 MCA NIMCET PYQ 4 If the graph of y = (x – 2)2 – 3 is shifted by 5 units up along y-axis and 2 units to the right along
the x-axis, then the equation of the resultant graph is
1 y=x2 +2 2 y=(x-2)2 +5 3 y=(x+2)2 +2 4 y = (x - 4)2 + 2 Go to Discussion MCA NIMCET Previous Year PYQ MCA NIMCET NIMCET 2017 PYQ Solution When y= f (x) is shifted by k units to the right along x
– axis, it become y= f (x - k )
Hence, new equation of
graph is y = (x - 4)2 + 2
[{"qus_id":"3772","year":"2018"},{"qus_id":"3746","year":"2018"},{"qus_id":"3901","year":"2019"},{"qus_id":"3929","year":"2019"},{"qus_id":"3914","year":"2019"},{"qus_id":"4291","year":"2017"},{"qus_id":"11118","year":"2022"},{"qus_id":"11138","year":"2022"},{"qus_id":"11524","year":"2023"},{"qus_id":"11531","year":"2023"},{"qus_id":"11532","year":"2023"},{"qus_id":"11543","year":"2023"},{"qus_id":"11546","year":"2023"},{"qus_id":"11623","year":"2024"},{"qus_id":"11651","year":"2024"},{"qus_id":"11668","year":"2024"},{"qus_id":"10223","year":"2015"},{"qus_id":"10233","year":"2015"}]