Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

MCA NIMCET Previous Year Questions (PYQs)

MCA NIMCET Function PYQ


MCA NIMCET PYQ
The graph of function $f(x)=\log _e({x}^3+\sqrt[]{{x}^6+1})$ is symmetric about:





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2023 PYQ

Solution


MCA NIMCET PYQ
If f(x) is a polynomial of degree 4, f(n) = n + 1 & f(0) = 25, then find f(5) = ?





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2023 PYQ

Solution

Correct Shortcut Method — Find \( f(5) \)

Step 1: Define a helper polynomial:

\[ g(x) = f(x) - (x + 1) \]

Given: \( f(1) = 2, f(2) = 3, f(3) = 4, f(4) = 5 \Rightarrow g(1) = g(2) = g(3) = g(4) = 0 \)

So, \[ g(x) = A(x - 1)(x - 2)(x - 3)(x - 4) \quad \Rightarrow \quad f(x) = A(x - 1)(x - 2)(x - 3)(x - 4) + (x + 1) \]

Step 2: Use \( f(0) = 25 \) to find A:

\[ f(0) = A(-1)(-2)(-3)(-4) + (0 + 1) = 24A + 1 = 25 \Rightarrow A = 1 \]

Step 3: Compute \( f(5) \):

\[ f(5) = (5 - 1)(5 - 2)(5 - 3)(5 - 4) + (5 + 1) = 4 \cdot 3 \cdot 2 \cdot 1 + 6 = 24 + 6 = \boxed{30} \]

✅ Final Answer:   \( \boxed{f(5) = 30} \)


MCA NIMCET PYQ
The maximum value of $f(x) = (x – 1)^2 (x + 1)^3$ is equal to $\frac{2^p3^q}{3125}$  then the ordered pair of (p, q) will be





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2023 PYQ

Solution

Maximum Value of \( f(x) = (x - 1)^2(x + 1)^3 \)

Step 1: Let’s define the function:

\[ f(x) = (x - 1)^2 (x + 1)^3 \]

Step 2: Take derivative to find critical points

Use product rule:
Let \( u = (x - 1)^2 \), \( v = (x + 1)^3 \)
\[ f'(x) = u'v + uv' = 2(x - 1)(x + 1)^3 + (x - 1)^2 \cdot 3(x + 1)^2 \] \[ f'(x) = (x - 1)(x + 1)^2 [2(x + 1) + 3(x - 1)] \] \[ f'(x) = (x - 1)(x + 1)^2 (5x - 1) \]

Step 3: Find critical points

Set \( f'(x) = 0 \): \[ (x - 1)(x + 1)^2 (5x - 1) = 0 \Rightarrow x = 1,\ -1,\ \frac{1}{5} \]

Step 4: Evaluate \( f(x) \) at these points

  • \( f(1) = 0 \)
  • \( f(-1) = 0 \)
  • \( f\left(\frac{1}{5}\right) = \left(\frac{1}{5} - 1\right)^2 \left(\frac{1}{5} + 1\right)^3 = \left(-\frac{4}{5}\right)^2 \left(\frac{6}{5}\right)^3 \)

\[ f\left(\frac{1}{5}\right) = \frac{16}{25} \cdot \frac{216}{125} = \frac{3456}{3125} \]

Step 5: Compare with given form:

It is given that maximum value is \( \frac{3456}{3125} = 2^p \cdot 3^q / 3125 \)

Factor 3456: \[ 3456 = 2^7 \cdot 3^3 \Rightarrow \text{So } p = 7, \quad q = 3 \]

✅ Final Answer:   \( \boxed{(p, q) = (7,\ 3)} \)


MCA NIMCET PYQ
If $| x - 6|= | x - 4x | -| x^2- 5x +6 |$ , where x is a real variable





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2023 PYQ

Solution


MCA NIMCET PYQ
A real valued function f is defined as $f(x)=\begin{cases}{-1} & {-2\leq x\leq0} \\ {x-1} & {0\leq x\leq2}\end{cases}$.  Which of the following statement is FALSE?





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2023 PYQ

Solution


MCA NIMCET PYQ
Number of onto (surjective) functions from A to B if n(A)=6 and n(B)=3, is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2019 PYQ

Solution


MCA NIMCET PYQ
Let $X_i, i = 1,2,.. , n$ be n observations and $w_i = px_i +k, i = 1,2, ,n$ where p and k are constants. If the mean of $x_i 's$ is 48 and the standard deviation is 12, whereas the mean of $w_i 's$ is 55 and the standard deviation is 15, then the value of p and k should be





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2019 PYQ

Solution


MCA NIMCET PYQ
Let S be the set $\{a\in Z^+:a\leq100\}$.If the equation $[tan^2 x]-tan x - a = 0$ has real roots (where [ . ] is the greatest integer function), then the number of elements is S is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2019 PYQ

Solution


MCA NIMCET PYQ
The number of one - one functions f: {1,2,3} → {a,b,c,d,e} is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2024 PYQ

Solution

Given: A one-one function from set $\{1,2,3\}$ to set $\{a,b,c,d,e\}$

Step 1: One-one (injective) function means no two elements map to the same output.

We choose 3 different elements from 5 and assign them to 3 inputs in order.

So, total one-one functions = $P(5,3) = 5 \times 4 \times 3 = 60$

✅ Final Answer: $\boxed{60}$


MCA NIMCET PYQ
The domain of the function $f(x)=\frac{{\cos }^{-1}x}{[x]}$ is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2022 PYQ

Solution


MCA NIMCET PYQ
The function $f(x)=\log (x+\sqrt[]{{x}^2+1})$ is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2022 PYQ

Solution


MCA NIMCET PYQ
The value of $f(1)$ for $f\Bigg{(}\frac{1-x}{1+x}\Bigg{)}=x+2$ is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2024 PYQ

Solution

Given:
$$f\left(\frac{1 - x}{1 + x}\right) = x + 2$$

To Find: \( f(1) \)

Let \( \frac{1 - x}{1 + x} = 1 \Rightarrow x = 0 \)

Then, \( f(1) = f\left(\frac{1 - 0}{1 + 0}\right) = 0 + 2 = 2 \)

Answer: $$\boxed{2}$$


MCA NIMCET PYQ
If f(x)=cos[$\pi$^2]x+cos[-$\pi$^2]x, where [.] stands for greatest integer function, then $f(\pi/2)$=





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2024 PYQ

Solution

? Function with Greatest Integer and Cosine

Given:

\[ f(x) = \cos\left([\pi^2]x\right) + \cos\left([-\pi^2]x\right) \]

Find: \[ f\left(\frac{\pi}{2}\right) \]

Step 1: Estimate Floor Values

\[ \pi^2 \approx 9.8696 \Rightarrow [\pi^2] = 9,\quad [-\pi^2] = -10 \]

Step 2: Plug into the Function

\[ f\left(\frac{\pi}{2}\right) = \cos\left(9 \cdot \frac{\pi}{2}\right) + \cos\left(-10 \cdot \frac{\pi}{2}\right) = \cos\left(\frac{9\pi}{2}\right) + \cos(-5\pi) \]

Step 3: Simplify

\[ \cos\left(\frac{9\pi}{2}\right) = 0,\quad \cos(-5\pi) = -1 \]

✅ Final Answer:

\[ \boxed{-1} \]


MCA NIMCET PYQ
The function  is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2018 PYQ

Solution


MCA NIMCET PYQ
Which of the following function is the inverse of itself?





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2018 PYQ

Solution


MCA NIMCET PYQ
If the graph of y = (x – 2)2 – 3 is shifted by 5 units up along y-axis and 2 units to the right along the x-axis, then the equation of the resultant graph is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2017 PYQ

Solution

When y= f (x) is shifted by k units to the right along x
– axis, it become y= f (x - k )
Hence, new equation of
graph is y = (x - 4)2 + 2

MCA NIMCET PYQ
A function $f : (0,\pi) \to R$ defined by $f(x) = 2 sin x + cos 2x$ has





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ
The number of one-to-one functions from {1, 2, 3} to {1, 2, 3, 4, 5} is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution



MCA NIMCET


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

MCA NIMCET


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...